Cereal Aphid & BYDV Control

Dr Louise McNamara, Oak Park, Teagasc CELUP

Ms. Lael Walsh & Dr Michael Gaffney, Ashtown, Teagasc CELUP

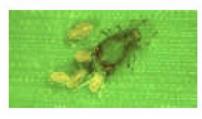
Contact: Louise.McNamara@Teagasc.ie Lael.Walsh@Teagasc.ie

Outline

Kdr resistance

Control Options

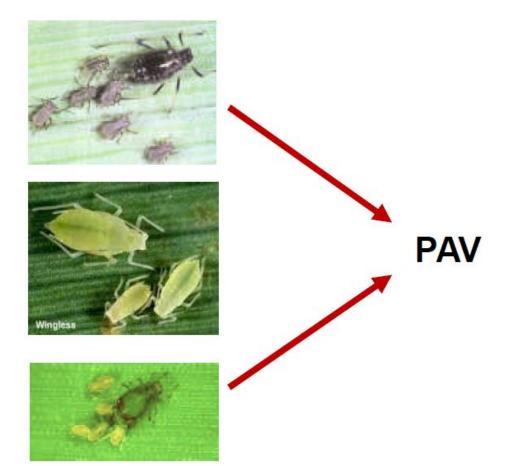
Looking forward


Barley Yellow Dwarf Virus (BYDV)

Aphids:

- Grain Aphid (Sitobion avenae)
- Rose-grain aphid (*Metopolophium dirhodum*)
- Bird-cherry aphid (*Rhopalosiphum padi*)

MAV Mild strain


RPV

Barley Yellow Dwarf Virus (BYDV)

Aphids:

- Grain Aphid
 (Sitobion avenae)
- Rose-grain aphid (*Metopolophium dirhodum*)
- Bird-cherry aphid (*Rhopalosiphum padi*)

Grain Aphid & BYDV

- Sitobion avenae (Grain Aphid)
- Reduces grain yield & quality
- Transmits BYDV
- *Kdr* confers partial pyrethroid resistance

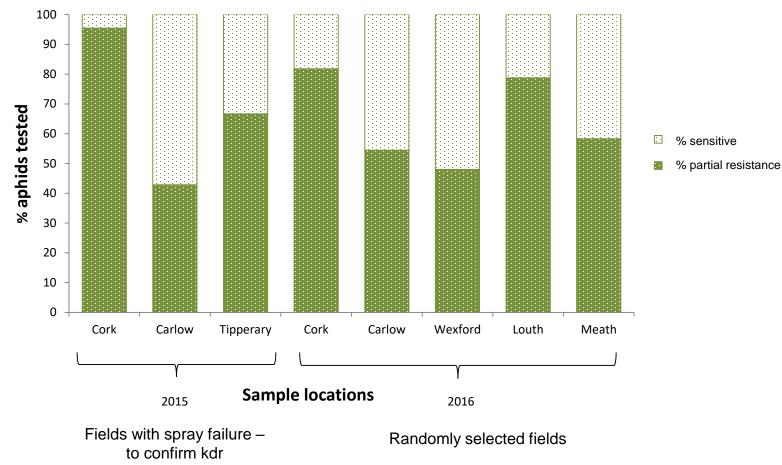
Yield loss due to BYDV		
Crop	Yield Reduction	
Winter barley (early Sept)	3.7 t/ha	
Spring barley (Late April)	1.99 t/ha	
Winter wheat	1.2 t/ha	

Kennedy, 2014

'Knock Down Resistance' or 'kdr' was first identified in the UK in 2012 and in Ireland 2013

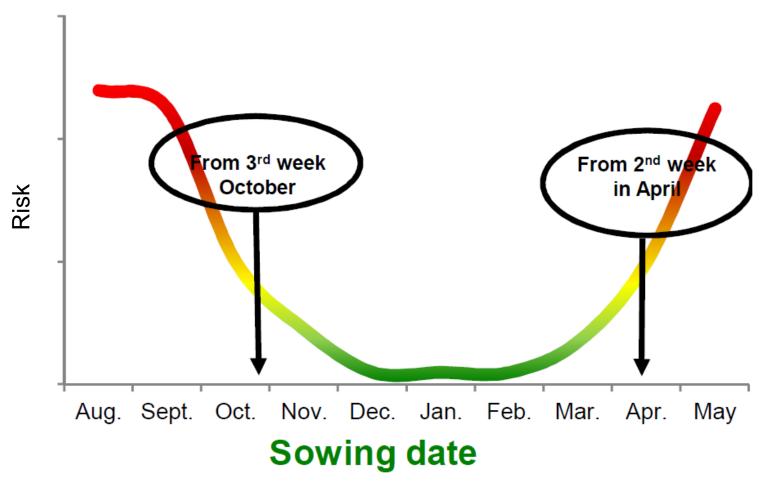
- Aphids with '*kdr*' gene are less susceptible to pyrethroids
- To date, 'kdr' has only been identified in Sitobion avenae (Grain Aphid), an important vector of Barley Yellow Dwarfing Virus (BYDV)
- In UK & Ireland a single clone (SA3) is most often associated with the kdr mutation that confers partial pyrethroid resistance
- Research indicates aphids carrying the resistance gene occur in all major grain growing regions

Field Collection sites



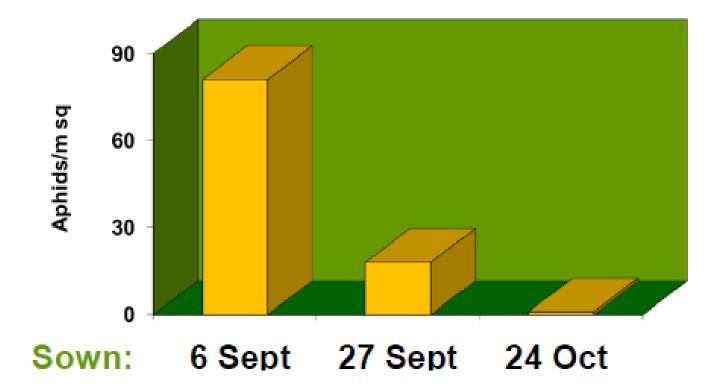
Field collections have been focused in major barley growing counties based on Teagasc acreage data

kdr incidence in Ireland



kdr widely present in *S. avenae* populations across arable counties in Ireland *kdr* occurs in aphid populations on both barley crops and adjacent grass hosts

BYDV Infection and sowing date


General representation

Kennedy, 2014

Aphid No/m² in barley sown on three dates Sampled 30 November

Kennedy, 2014

Autumn BYDV Control

Crop	BYDV Risk	Control Action
Early sown (Sept) cereals	High	Seed treatment & pyrethroid in Nov <u>Or</u> Spray at 2/3 leaf stage & 1 st week Nov
Oct sown	Medium to high	Seed Treatment <u>Or</u> Pyrethroid spray 1st week Nov
Emerging after Nov	Low	Control needed in mild winters where aphids are plentiful or in risk areas

Monitor for control failure – do not reapply the same treatment.

Late spraying of previously unsprayed crops - beneficial when aphids/virus is widespread

BYDV Control – 2017 Cork Trial

Untreated Pvrethroid Seed Treatment

Winter Barley, Cassia, Sown 12th October, Cork

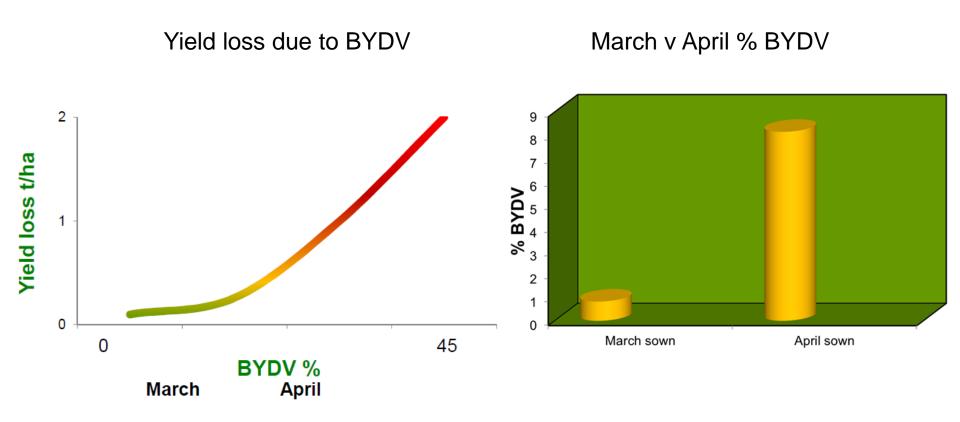

Insecticide trial Cork 2017

Redigo deter Seed Treatment	Pyrethroid foliar application	% BYDV	Yield	No. live aphids/m2 @GS31
No	No	39	4.6	30.9
No	Nov (2/3 leaf stage)	11.4	6.1	7.7
No	Jan	4.5	7	3.9
Yes	No	3	7	4.4
Yes	Nov (6 weeks from planting)	2.6	7	3.3
Yes	Jan	2	7	1.65

One year data only kdr Grain Aphids identified in plots

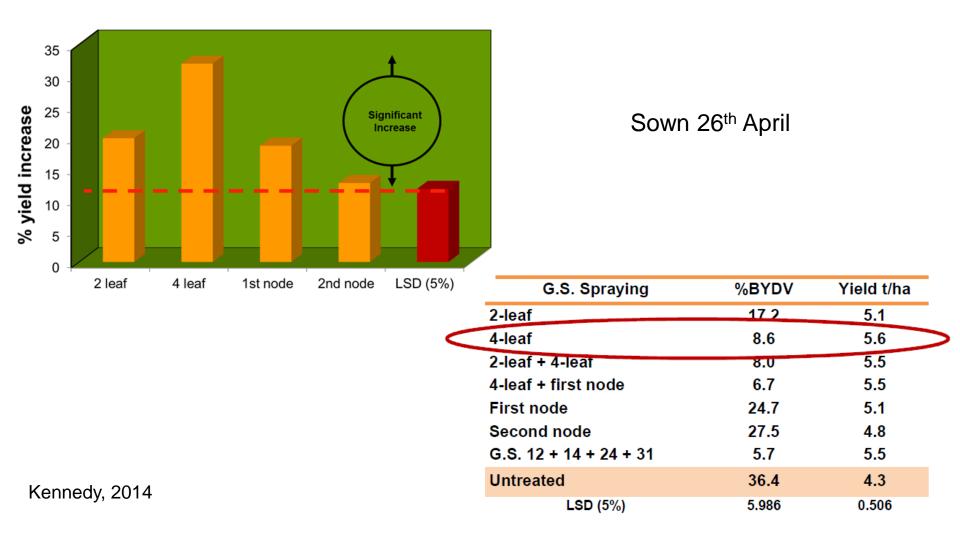
BYDV Control – 2017 Carlow Trial

Winter Barley, Cassia, Sown 3rd October, Carlow


Insecticide trial Carlow 2017

Redigo deter Seed Treatment	Pyrethroid foliar application	% BYDV	Yield	No. live aphids/m2 @GS31
No	No	3.7	7.2	12.7
No	Nov (2/3 leaf stage)	2.3	8.8	0
No	Jan	2.6	8.6	1.65
Yes	No	2	8.8	0
Yes	Nov (6 weeks from planting)	1.9	9	0
Yes	Jan	0.9	9.2	0

One year data only kdr Grain Aphids identified in plots


Spring Barley BYDV Control

Mean of 8 seasons Kennedy, 2014

Spring Barley BYDV Control

Spring BYDV Control

Сгор	BYDV Risk*	Control Action
	*Based on 8 years Teagasc trials	
March sown spring cereals	V. low	Aphicide spray may not be neccesary
April sown spring cereals	Medium to high	Single pyrethroid spray at G.S.14
		Seed treatments <u>not</u> permitted in spring

Spring wheat and oats:

- Normal sowing dates (pre-April) negligible risk
- Jan & Feb sown: No treatment needed
- IF sown in April: spray pyrethroid @ 3-4 leaf

Looking Forward

Risk Factors

- Early sown autumn crops / late sown spring crops
- Mild winters (Aphids overwintering)
- Mild Autumns (Aphid migration period lengthened)

Challenges

- No Redigo deter?
- Further resistance development
- Diminishing products increased resistance
- Climate change

Future Avenues

- Importance of cultural control
- Alternative insecticides?
- Variety selection
- Biocontrol: Encouraging natural enemies
- Improved monitoring

THE UNIVERSITY of EDINBURGH School of GeoSciences

Establishment & management of Ecological Focus Areas to enhance IPM

Dr Louise McNamara, Oak Park, Teagasc CELUP

Contact: Louise.McNamara@Teagasc.ie Daire.OHuallachain@teagasc.ie, Robyn.Earl@Teagasc.ie

Assess how establishment & management of EFA's can be utilised within IPM

- Determine the impact of selected EFA's on crop yields.
- Relate differences in yield to pest/disease levels in those areas
- Are pest/disease levels correlated with the EFA?
- Do EFA's encourage beneficial organisms and enhance natural pest control?
- Can management of EFA's be a tool in IPM programs?
- Determine arable farmers attitudes to measures to enhance ecosystem services.

- Arable margins provide habitats, enhance pollination services, improve water quality & can enhance productivity
- Increases in crop yield (wheat, oilseed rape or beans) due to sown arable margins, can match/exceed yield associated with the land removed for the margin up to 8% of field (Pywell *et al.* 2015).
- This project will assess benefits of arable margins for biodiversity, IPM, yield improvement and virus suppression.

Methology

- Experimental margins sown with a variety of treatments
- **Observational margins:** Existing GLAS margins will be monitored
- Margins monitored for vegetative composition and establishment.
- Margins and adjacent crop monitored for pests and natural enemies to evaluate the margins' impacts on pest management.
- Crop measured for yield and virus levels to assess the impacts of arable margins on the adjacent crops.

Established wildflower margin Kildalton Agricultural College

Experimental Margins

- Control A- Crop to the edge
- 1 100% Cocksfoot (25-30kg/ha)
- 2 50% Cocksfoot + 50% Timothy sown (25-30kg/ha)
- ◆ 3 60% Timothy / Cocksfoot + 40% Crested Dogstail and smooth stalked meadow grass (20kg/ha)
- 4 As plot 4 sown at 16Kg + 4kg of 18% Ox-eye Daisy, 15% knapweed, 10% wild carrot, 5% yarrow, 12% red campion, 7% red clover, 8% sorrel, 2% tufted vetch, 15% birdsfoot trefoil, Ladys Bedstraw 8%
- Control B- Natural regeneration

Summary

Autumn cereals			
Sowing date	BYDV Risk	Control Action	
Early sown (Sept)	High	Seed treatment & Pyrethroid aphicide in Nov <u>Or</u>	
		Aphicide at 2/3 leaf stage & 1 st week Nov	
Oct sown	Medium to high	Seed treatment <u>Or</u> Pyrethroid aphicide 1st week Nov	
Emerging after Nov	Low	Control needed in mild winters where aphids are plentiful or in risk areas	
Spring cereals			
Sowing date	BYDV Risk	Control Action	
March sown	Low	Aphicide spray may not be necessary	
April sown	Medium to high	Pyrethroid aphicide at 4 leaf	
		Seed treatments <u>not</u> permitted for Spring sown cereals	

Acknowledgments

Kdr work is conducted as part of the 'EPIC' project, funded under Stimulus (project 14/S/879), in collaboration of Dr Gordon Purvis at UCD and Drs Steve Foster and Dr Martin Williamson at Rothamsted Research.

Teagasc Oak Park

Kieran Crombie Liz Glynn Jim Grace Deirdre Doyle Fiona Hutton **UCD** Dr Gordon Purvis

Rothamsted Research

Dr Steve Foster Dr Martin Williamson

