

Getting Soil Fertility Right through Strategic Fertiliser Use

Dairygold Dairy Day 2018 Corrin Mart, Fermoy 12th January 2018

Dr. Stan Lalor Grassland AGRO

Grassland AGRO

Standard Fertilisers – Full Range

Enhanced Products – Specific Soil / Nutrient Challenges

Technical Advice & Fertiliser Planning

Internal Trials Programme

National Programme Support

Quick Outline

- Linking Soil to the Bottom Line
- Key Targets for Soils & fertiliser
 - What are we trying to achieve ?
- Getting the basics right
 - Lime / Slurry / Sulphur / P / K / Nitrogen
- P & K to grow 15 tonnes of grass DM
- A Simple Fertiliser Plan
- Different approaches
 - Soil Condition
 - Phosphorus

Linking Soil to the Bottom Line

Healthy Soil \rightarrow 3-legged Stool

3 essential components:

<u>Physical</u>: What we see (Structure, Strength, Drainage)

<u>Chemical</u>: What we test (Organic Matter, Soil pH, Nutrients: Total & Available)

<u>Biological</u>: What is alive (Earthworms, Bacteria, Fungi, Plants, Nutrient Cycles)

Soil Conditioning: → Optimises these 3 functions

5 Steps – Actions & Targets

	Action	Target	
1) Soil Test	 Take soil samples every 2-3 years Use soil samples 	 Have soil analysis results for every field 	
2) Lime & soil pH	 Apply lime as a priority where required 	 Soil pH in all fields should be > 6.2 	 Higher farm Output
3) Soil P & K Index	 Compare P and K levels and indices on soil test results between fields 	 Aim to have every field in Index 3 	 Better return on investment
4) Slurry	 Target slurry to fields that need it most (P/K Index 1 or 2 and/or silage fields) 	 Slurry should only go to fields that has a need for the NPK in the slurry 	in fertiliser
5) Fertiliser choices	 Apply enough of every nutrient and avoid excess of any nutrient. BALANCED supply. 	 Fertiliser purchases and applications based on the needs of each field rather than history 	

Soil pH & Lime

Every Soil Fertility Management Plan should start with building & maintaining soil pH

More nutrients from the soil

Better use of applied manures & fertilisers

Lime to build

Maintain in optimum range of 6.3-6.5

7

Grassland AGRO

Slurry Value

Growing 15 t/ha of Grass DM – **P & K**

Grassland AGRO

	P (Phosphorus)	K (Potassium)	
Typical nutrient uptake to grow 1 tonne of grass DM	4 kg/t	30 kg/t	
Nutrient uptake needed to grow 15 tonne grass per hectare	60 kg/ha	450 kg/ha	
Nutrient eaten by grazing cows (80% utilized… 12 t DM intake)	48 kg/ha	360 kg/ha	
Approx. % of nutrient retained by the cow (not excreted back to pasture in dung / urine).	40 %	10 %	
Nutrient retained by the cows (= offtake by the cow)	19 kg/ha	36 kg/ha	
When P Fixation & K Leaching are factored in:	20 units/acre P	40 units/acre K	
Low Soil Index: Index 2: Index 1:	+ 8 units/acre P + 2 + 16 units/acre P + 5	5 units/acre K 0 units/acre K	

Cutting Paddocks

Grassland AGRO

4 bales of Silage = 1000 gallons Slurry

Fertiliser programmes (PKS)

Grass needs 1 unit of Sulphur to balance every 12 units of Nitrogen

Simple Annual Plan

(units/acre)		Spring	Summer	Autumn
Application Targets	Ν	100	80	70
	Р	14	3	3
	K	28	6	6
	S	8	6	6
Program		Urea	CAN	CAN
		18-6-12	High NPK + S	High NPK + S
		Urea	CAN	CAN
Extras	Low P	10-10-20 TOP PHOS		
	Low K			MOP Slurry

- Simple plan across the farm
- Minimal number of products
- Phosphorus (P) Spring
- Potassium (K) Autumn

- Sulphur Spring plus 2 (?) rounds
- Simple adjustments for Low soils

NPK for silage

	Ν	Р	K			
First Cut (5 t/ha DM)						
kg/ha	125	20	125			
units/acre	100	16	100			
Second Cut (4 t/ha DM)						
kg/ha	100	16	100			
units/acre	80	13	80			
Strong Paddocks - Every 1 t/ha DM (= approx. 2 bales / acre)						
kg/ha		4	25			
units/acre		3	20			

4 bales of silage requires 1000 gals slurry to replace the P & K

Annual Fertiliser Programmes - (John Farmer)

Pro	ogramm	ne ID	1) D	airy Grazir	ng				Crop Ty	pe(s)	Gra	zing (Dairy)),	
Fields receiving this programme Dairy Grazing,						Soil Sam	Soil Samples receiving this programme SS 1 Dairy,			Soil pH (Weighted) N Index (Weighted) P Index (Weighted)	Gr	i.3 rass 3		
	Nutrien	t Advice	for these field	ds Unite (nore	N advice	P advice	K advice	S advice	1		K Index (Weighted)		3	
			Urea 10.5 ba	186121	Spaglacel UNITS	0.985/8crel 21-2	5511 bags acrel	CAN IL Dags lace	UNIO 150861	screi				
	_		↓	<u>↓</u>	↓	↓		↓	↓	_				
	Jan	1	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct			
ICLE	- <u>N</u>		23	2/	34	2/		27	20					
ts/a	- <u>r</u>			10		5								
uni	- <u>s</u>			10										
	5													

Total (Units/acre)		Annual Total Product	P	er Acre	Total	Notes
N	158	Urea	0.5	bags/acre	0.5 Tonnes	
Р	12	18-6-12	1.5	bags/acre	1.5 Tonnes	
ĸ	23	CAN	3	bags/acre	3 Tonnes	
S	0	27-2.5-5	1	bags/acre	1 Tonnes	

Common Issues on Farm

Soil Condition

- Structure / Compaction
- Shallow rooting
- Sod Pull
- Surface Capping High Slurry Application
- Maintaining good soil pH

Phosphorus

Grassland AGRO

- Poor grass growth, especially in spring
- Soil P hard to build
- Extremes of pH (Very Low vs. High)
- Phosphorus issues in cows

What is Physiolith ?

Active Ingredients

Root Stimulant

Seaweed Extracts Plant hormone stimulation for root and plant growth and health

Completely Unique to Physiolith

Marine Calcium Soil Conditioner

25.7% Ca – 0.6% Mg Higher solubility, porosity and reactivity that conventional lime

Similar in activity to standard lime products

Trials with Physiolith

Grassland AGRO

Iron / Aluminium / Phosphorus

(Teagasc - Soil Geochemical Atlas)

High Iron (Fe) + Aluminium (Al) in soil = High Total P

Iron and Aluminium fix a lot of P in the soil !!!!!

The P is in the ground, but it is not available

Phosphorus Fixation

PHYSALG 27

Gra

Release of P from the granule is slower, so the grass can compete better over a longer period. +

Plant root and soil stimulants in the product helps the roots to get more P from the soil

TOP PHOS

Top Phos Grazing Trial 2017 (Offaly)

In Summary

- Get Soil results in place on which to make decisions
- Spread lime where you need it
- Get slurry to where its most valuable
- Have a fertiliser plan in place
 - Keep it simple
 - Small adjustments for low fields
 - Get P out early
 - Build K in Autumn
- Soil Condition is part of Soil Fertility
- Options with newer soil/fertiliser approaches

Thank you !!!!

ANY QUESTIONS ???????

24